

Master Plan for **Arterial Road Network Development in Myanmar**

6 August 2014

Seong Yil BAE Project Manager

CHUNIL Yooshin Consortium

Contents

- **Needs for a Master Plan**
- **Objectives of the Project**
- **Scope of Works**
- **Major Consideration of for the Master Plan**
- **Arterial Road Development Strategies**
- **Definition of Arterial Roads**
- **Problems of Existing Road and Improvements**
- **Cross Section of Arterial Roads**
- **Arterial Road Improvement Plan**
- 10. Cost Estimation
- 11. Additional Proposal: Road Numbering

1. Needs for a Master Plan

Poor Road Infrastructure

- Lack of road infra structure → Excessive cost for logistics
- Most of roads have got 1-lane or 2-lanes
 - → Yangon-Mandalay Expressway is the only road with 4-lanes
 - → Most of Union Highways and Region/State Roads shows narrowed width, bad alignment and poor pavement.
- Poor Road Network
 - → Regional economic growth is limited due to pure road networks.
 - → Limit on economic and social participation of local residents
 - → Lack of road network connecting regional growth center
 - → Lack of road network for smooth economic activities with neighboring countries

- Road Construction on Short-term Needs
 - → Priority is given to international connectivity with neighboring countries
 - → Investment is given to road development for short-term demand and remote area connection

Need for Road Network Development

- Regional transport shares: 76.1%(passenger), 80.7% (cargo) (Source: National Transport Development Plan, JICA, 2014)
- → Roads play major roles in regional passenger and cargo transport
- Support for social & regional integration and poverty reduction
- Balanced regional development through efficient connection between Regions
- Basic infrastructure development for economic development

A master plan for arterial road network development (getting comprehensive, systematic, and long-term) is essential for supporting economic development

Comprehensive **Approach**

- Multimodal Consideration
- **Regional & Industrial Development**

Systematic Approach

- **Functional Road Networks**
- **Integration of Road Networks**

Long-term **Approach**

- **Long-term View with Short-term Demand**
- **Phased Road Network Development**

2. Objectives of the Project

- **Establishing a master plan** for arterial road network development
- Conducting a feasibility study on the road improvement project between Monywa and Gangaw of Myanmar

Accelerating Economy Growth & Poverty Reduction

- **Establishing Master Plan** for Arterial Road **Network Development**
- **Conducting an FS**

Sharing Experience and Technology related to Arterial Road **Network Development**

3. Scope of Works

○ Master Plan

- Area: 676,577km²
 Population: 61 million
- Administrative System: 7 States & 7 Regions, 68 Districts, 333 Townships
- Road Network in Myanmar (148,689 km)

	Road Type					
MOC (39,082)	Union Highways	19,503km				
	Regional/State Roads	19,579km				
Ministry o	93,373km					
Others (Y	Others (YCDC, NCDC, MCDC) 16,235km					

Feasibility Study

Monywa – Gangaw Road Section (180km)

○ Technology Transfer

- Base Year
 - 1) Data Collection: 2012~2014
 - 2) Field Survey Data: 2013~2014
- Time Frame for Planning
 - 1) Phase 1: 2016~2020(Target Year:2020)
 - →Implementation Plan by Year
 - 2) Phase 2: 2021~2025(Target Year:2025)
 - →Implementation Plan for 5 Years
 - 3) Phase 3: 2026~2035(Target Year:2035)
 - → Implementation Plan for 10 Years
- Time Frame for Analysis
 - 1) Base Year: 2014
 - 2) Forecast Year: 2020, 2030, 2040 Note)

(Note: Same as the forecast year in National Transport Development Master Plan, JICA, 2014)

5. Arterial Road Development Strategies

- Center to Center Connection
 - Accessibility improvement to capital city of Region/State
- Multimodal Transport Connection
 - Connectivity with other transport modes such as Railway, Airport, Port, and Inland waterway
- International Linkage
 - Improvement of international road network (Asian/ASEAN Highway, GMS, etc.)
- Hierarchical Road Network Development
 - Road classification by its function and road network development (Strengthening efficiency and functionality)
- Topographical Consideration
 - Minimizing negative environmental impacts

☑ Arterial Road Network Development

Center to Center Connection

Multimodal Transport Connectivity

International Linkage

Hierarchical Road Network Development

> Topographical Consideration

Expressway Network Development

- Establishment of High-speed Arterial Road ⇒ Support Economy growth
- Current Expressway in Myanmar
 - : Yangon ~ Mandalay Expressway
 - 586km, 4 Lanes (Future: 8 Lanes)
- Considerations
 - National Development Corridors
 - International Linkages
 - Strategic Development Corridors
 - Multimodal Transport
 - Topography
 - Arterial Road Network
- 7 X 5 Expressway Network (10,000km)
 - East-West: 7 Corridors → 3,400km
 - North-South: 5 Corridors → 6,000km
 - Ring-Road (Major Cities) → 600km

6. Definition of Arterial Roads

Local Road	Collector	Arterial Road							
Local Road	Road		Main Arterial	Expressway					
run within a Township	run within a District	run within a Region/State	Across Regions/States	High speed with access control					

← accessibility (a major consideration) $mobility \rightarrow$

Road Class	Basic Principles
Main Arterial Road	 Roads that connect two or more states ⇒ Operation in all weathers; Securing sufficient Capacity; Asphalt Pavement; Design standards of International Road Networks
Sub Arterial Road	 Roads that connect two or more Main Arterial Roads ⇒ Securing the Connectivity of Main Arterial Roads, Operation regardless of weather and Road applied Asphalt Pavement

☑ Classification by Road Function

7. Problems of Existing Road and Improvements

Items	Problem	Improvements			
Road Condition	 Poor pavement condition Low rate of Pavement Narrow width of Pavement Lower than the standards of international road networks Aged and poor bridge 	 Repairing and re-pavement New pavement Road pavement widening Road upgrade to meet standards Building new bridges 			
Road Network	Disconnected road networksDisconnection at main rivers	- Road, bridge & tunnel construction - Building new bridges			
Traffic	Traffic congestion in large citiesMixed traffic flowsPoor transport management	- New road and bypass road - Control of traffic flows - Installing transport safety facilitie (traffic lights, traffic signs, etc.)			

8. Cross Sections of Arterial Roads

☑ Cross Section by Road Class

			Local	Collector	1	Arterial Roa	d
	Classifi	cation	Road	Road	Sub Arterial	Main Arterial	Expressway
Wi	dth	Rural	3.00	3.25	3.50	3.50	3.60
VVI	atri	Urban	3.00	3.00	3.25	3.25	3.50
		Level	1.5	2.0	2.5	2.5	3.0
Shoul	Rural	Rolling	1.5	2.0	2.5	2.5	3.0
der		Mountain	1.0	1.5	2.0	2.0	2.5
	l	Jrban	1.5	1.5	2.0	2.0	2.0
	D	Level	-	-	2.0 (0.5)1)	3.0 (0.5)	4.0
Medi	Rural	Rolling	-	-	2.0 (0.5)	3.0 (0.5)	4.0
an		Mountain	-	-	2.0 (0.5)	2.5 (0.5)	3.0
l		Jrban	-	-	(0.5)	(0.5)	3.0
Diabt	of wow	Rural	30	45	45	45	70~122
Right	of way	Urban	To decis	ion width of	Right of Wa	ay by urban	planning

☑ Typical Cross Sections

☑ Typical Cross Sections

9. Arterial Road Improvement Plan

☑ Improvement Type (Main Arterial Road)

Classification	Type-1	Type-2	Type-3	Type-4	Type-5
Improveme nt Plan	New construction 4-Lane	New construction 2-Lane	expansion 4-Lane	Upgrade 2-Lane	Pavement

Examples: Improvement Plan of Main Arterial Road

	Classific			Condition o	f the exis	ting Roa	d			I	mprover	ment plan	
Road No.	toad ation Management		Sector Start point	Topogra phy	Length	Lane width	Number of Lanes	Paveme	ment	Lane width	Number of Lanes	Paveme nt type	
	17140	MU0801000000	Ngayokekaungd aung Ngayokekaung		Mount	29.6	4.3	1	Earth	Type-4	12.5	2	AC
	17149	MU0802000000	TaZinGwin	Ngayokekaungd aung	Mount	19.8	4.3	1	Bitumi nous	Type-4	12.5	2	AC
	17110	MU0804000000	KhweLeGyi	Ngapudaw	Rolling	14.9	4.3	1	Bitumi nous	Type-4	12.5	2	AC
1	17020	MU0806000000	LanThaMaing	Kwelwe	Level	42.2	4.3	1	Bitumi nous	Type-4	12.5	2	AC
	17136	MU0808000000	ThaYoutMyaik	Mawlamyinegyu n	Level	7.8	4.3	1	Bitumi nous	Type-4	12.5	2	AC
	New	MN0810000000	Shewgyaung	PeikTar	Level	6.8	1	-	-	Type-2	12.5	2	AC
2~24												:	

☑ Improvement Type (Sub Arterial Road)

C	Classification	Type-1	Type-2	Type-3
lmp	provement Plan	New construction 2-Lane	Upgrade 2-Lane	Pavement

Examples: Improvement Plan of Sub Arterial Road

	01 :6:			Condition of	of the exis	ting Roa	d			Improvement plan			
Road No.	Classific ation No.	Management No.	Sec	Topogra	l an atte	Lane	Number	Paveme	Improve	Lane	Number	Paveme	
	NO.		Start point	End point	phy	. Hendini	width	of Lanes	nt type	ment type	width	of Lanes	nt type
101	01145	SU0000010101	Hopin	Nyaungpin	Mount	63.6	5.5	1	Gravel	Type-2	12.5	2	AC
103	01004	SU0000010301	Myitkyina	PutaO	Mount	350.2	9.1	1	Macad am	Type-2	12.5	2	AC
104	01014	SU0000010401	Lawa	Hpakan	Mount	69.2	5.5	1	Macad am	Type-2	12.5	2	AC
		•											

10. Cost Estimation

☑ Calculation of Project Cost

Unit construction Costs by Improvement Alternative by Road Class

		N		Unit construction				Applied unit			
Classification	Improvement type	Lanes	Width	Pavement type	vement Cost		New construction and upgrade factor ³⁾	Topography factor ⁴⁾	Road facility factor ⁵⁾	construction Cost (US\$/KM)	
Main Arterial Road											

- Note: 1) Unit construction Cost(w=10.0m): ① including earth work, Pavement(A.C), drainage work, slope protection work and small bridge ② calculating on the basis of 10.0m standard cross section
 - 2) Pavement width factor: Pavement width standard 10.0m(Lane width:7.0m, Shoulder width:3.0m)

 → adjusting factor value according to the width change
 - 3) New construction and upgrade factor: Calculating factor value by difficulty of new construction width and upgrade(new:1.5 ~ 2.0, upgrade:1.0)
 - 4) Topographic factor: Increase of construction Cost by topographic condition. 20% of increase in rolling and 50% increase in mountainous in comparison with flat terrain
 - 5) Road facility factor: Additional construction Cost factor according to Road function and reinforcement of Road facility caused by disaster(1.2time in coastal areas)

Unit: million us \$ / km

Classification Year	1		5		10		15		20		25		30	Cycle
Operation Cost	0.2		0.2		0.2		0.2		0.2		0.2		0.2	1year
Routine repair	0.5		0.5		0.5		0.6		0.8		1.3		1.3	1year
Re-surfacing	-	-	-	-	2.0	-	-	-	2.0	-	-	-	2.0	10year
Bridge rehabilitation	-	-	-	-	32	-	-	-	32	-	-	-	32	10year
Total	0.7		0.7		34.7		0.8		35.0		1.5		35.5	

- Operation Cost: Cost of office operation
- Routine Repair : Cleaning Road surface, patching pot-holes, sealing cracks
- Re-surfacing: Patching and overlaying the defective Road surface that is requiring a medium/large scale repair
- Bridge rehabilitation : Shoe, Expansion Joint, Paint, etc.

☑ Maintenance Unit Cost (Plan in Myanmar)

Unit: million us \$ / km

Cla	assification	Cycle	Unit Cost
	Operation Cost	1 year	
Main Arterial	Routine repair	1 year	
Road	Re-surfacing	10 years	
	Bridge rehabilitation	10 years	
	Operation Cost	1 year	
Sub Arterial	Routine repair	1 year	
Road	Re-surfacing	10 years	
	Bridge rehabilitation	10 years	

11. Additional Proposal: Road Numbering

Problems

- Arterial Roads in Myanmar is named by words (state/township/village names)
- Road users have difficulties in recognizing where they ar and where to go in the road network

Necessity

- It is Necessary for road users to figure out the whole road network in which they are
- Necessary for road authorities (MoC, etc) to maintain road networks with efficiency

Improvement

Introduction of road numbering systems

☑ Comparison of Road Numbering Systems

Classifi -cation	KOREA,USA	JAPAN	United Kingdom	Thailand
Express- way	Odd numbers → south to north Even numbers → west to east	Road Name	Hub-and-zone system M (M1, M3, etc.)	None system → 8 expressway (Bangkok area and some nearby provinces)
National Road	Odd numbers → south to north	Northeast and	Hub-and-spoke system - Major Road :	- Northern: 1xxx - Northeastern: 2xxx - Central: 3xxx - Southern: 4xxx
	Even numbers → west to east	increasing towards the southwest	Axxxx → 1~4 digits - Local Road : Bxxxx → 3~4 digits	 Primary Road : 2-digits Secondary Road : 3-digits Intra-province Highway : 4-digits
Naming	Network base	Zone base		Mixed (Network + Zone)

☑ Introduction of Road numbering systems

Road calss	Property	Plan	Type of Naming
Express / Arterial Road	Connecting Road between Regions	Recognition of Road users	Network base
Collect Road / Local Road	Access Road in Region	Road OEM by Local Government	Zone base

☑ Comparison of Road Symbols

Classifi -cation	KOREA	USA	JAPAN	United Kingdom	Thailand
Expressway	15	INTERSTATE 88	東名 _{高速道路} TOMEL EXPWY	☆ M5	Ø €
National Road	1	U.S. ROUTE MARKER (M1-4)	142 ROUTE	[A40]	

☑ Road Numbering for Expressway Networks

1) Main Expressway

- Main Axis Numbers (2 digits : AB)

A	В
 South-North Corridor ⇒ increasing to the east(1,2,3,4,) · West-East Corridor ⇒ increasing to the north(1,2,3,4,) 	 south-north corridor end in 5 west-east corridor end in 0

Symbol (e.g)

- south-north corridor : 15 25 35 45 55 65
- west to east corridor : 10 20 30 40 50

2) Branch Expressway

- Numbers (3 digits : ABX)

AB	X
The main expressway numbers	 South-North Corridor ⇒ end in 1,3,5,7,9 (Odd) West-East Corridor ⇒ end in 2,4,6,8 (Even)

Symbol(e.g)

- west-east corridor : 552

(Dawei-Thai border)

3) Ring-type Expressway(in Large Cities)

- Numbers (3 digits : Large Cities)

Symbol (e.g)

· YANGON 100

- MANDALAY 200

- NAY PYI TAW

(Example)

Korea

○ Myanmar(Proposal)

☑ Road Numbering for Main Arterial Road Networks

- National Highway Numbers (1 or 2 digits : A or AB)

South-North Corridor	West-East Corridor	
 ⇒ Odd Numbers ⇒ increasing to the east (1,3,5,7,9,11,13) 	 ⇒ Even Numbers ⇒ increasing to the north (2,4,6,8,10,12) 	

- south-north corridor: (1) (3) (5) **Symbol** (e.g) west to east corridor: 2

(Example)

Korea

○ Myanmar(Proposal)

☑ Road Numbering for Sub Arterial Road Networks

- Regional & State Numbers (3 or 4 digits : AXY or ABXY)

A or AB (Area Classification)			XY	
Area	No	Area	No	· 1~50 : assignment in route which
Kachin	1	Naypyitaw	10	connect only inside of jurisdiction area
Kayah	2	Mon	11	· 51~99 : assignment in route which
Kayin	3	Rakhine	12	connect with other area ⇒ Number of area where route
Chin	4	Yangon Region	13	length is long is followed.
Sagaing	5	Shan(South)	14	South-North Corridor⇒ Odd Numbers
Tanintharyi	6	Shan(North)	15	⇒ Increasing to the east
Bago	7	Shan(East)	16	(01,03,05,07,,99) · West-East Corridor
Magway	8	Ayeyarwady	17	⇒ Even Numbers ⇒ Increasing to the porth
Mandalay	9			→ Increasing to the north (02,04,06,08,,98)
Symbol(e.g)	101 1655		3 or 4 digits

Thank you!

Seong Yil BAE

Project Manager of *The Master Plan* Yooshin Engineering Corporation

E-mail : sybae@yooshin.co.kr